The Jump Set under Geometric Regularization. Part 1: Basic Technique and First-Order Denoising

نویسنده

  • Tuomo Valkonen
چکیده

Abstract. Let u ∈ BV(Ω) solve the total variation denoising problem with L2-squared fidelity and data f . Caselles et al. [Multiscale Model. Simul. 6 (2008), 879–894] have shown the containment Hm−1(Ju \ Jf ) = 0 of the jump set Ju of u in that of f . Their proof unfortunately depends heavily on the co-area formula, as do many results in this area, and as such is not directly extensible to higher-order, curvature-based, and other advanced geometric regularisers, such as total generalised variation (TGV) and Euler’s elastica. These have received increased attention in recent times due to their better practical regularisation properties compared to conventional total variation or wavelets. We prove analogous jump set containment properties for a general class of regularisers. We do this with novel Lipschitz transformation techniques, and do not require the co-area formula. In the present Part 1 we demonstrate the general technique on first-order regularisers, while in Part 2 we will extend it to higher-order regularisers. In particular, we concentrate in this part on TV and, as a novelty, Huber-regularised TV. We also demonstrate that the technique would apply to non-convex TV models as well as the Perona-Malik anisotropic diffusion, if these approaches were well-posed to begin with.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The jump set under geometric regularisation. Part 1: Basic technique and first-order denoising

Let u ∈ BV(Ω) solve the total variation denoising problem with L-squared fidelity and data f . Caselles et al. [Multiscale Model. Simul. 6 (2008), 879–894] have shown the containment H(Ju \Jf ) = 0 of the jump set Ju of u in that of f . Their proof unfortunately depends heavily on the co-area formula, as do many results in this area, and as such is not directly extensible to higher-order, curva...

متن کامل

The jump set under geometric regularisation. Part 2: Higher-order approaches

In Part 1, we developed a new technique based on Lipschitz pushforwards for proving the jump set containment property H(Ju \ Jf ) = 0 of solutions u to total variation denoising. We demonstrated that the technique also applies to Huber-regularised TV. Now, in this Part 2, we extend the technique to higher-order regularisers. We are not quite able to prove the property for total generalised vari...

متن کامل

Improved Total Variation-Type Regularization Using Higher Order Edge Detectors

We present a novel deconvolution approach to accurately restore piecewise smooth signals from blurred data. The first stage uses Higher Order Total Variation restorations to obtain an estimate of the location of jump discontinuities from the blurred data. In the second stage the estimated jump locations are used to determine the local orders of a Variable Order Total Variation restoration. The ...

متن کامل

Large Deflection Analysis of Compliant Beams of Variable Thickness and Non-Homogenous Material under Combined Load and Multiple Boundary Conditions

This paper studies a new approach to analyze the large deflection behavior of prismatic and non-prismatic beams of non-homogenous material under combined load and multiple boundary conditions. The mathematical formulation has been derived which led to a set of six first-order ordinary differential equations. The geometric nonlinearity was solved numerically using the multiple shooting method co...

متن کامل

Generalized methods and solvers for noise removal from piecewise constant signals. I. Background theory.

Removing noise from piecewise constant (PWC) signals is a challenging signal processing problem arising in many practical contexts. For example, in exploration geosciences, noisy drill hole records need to be separated into stratigraphic zones, and in biophysics, jumps between molecular dwell states have to be extracted from noisy fluorescence microscopy signals. Many PWC denoising methods exis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Math. Analysis

دوره 47  شماره 

صفحات  -

تاریخ انتشار 2015